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ON THE VIBRATIONS OF A SEMI-INFINITE BEAM WITH INTERNAL AND
EXTERNAL FRICTION"

V.N. PIVOVARCHIK

The spectrum of a problem associated with the vibrations of a semi~infinite
beam with internal (Voigt material) and external viscous friction is
investigated. Under certain conditions a domain is defined in which a
complex discrete spectrum is possible, Sufficient conditions are obtained
for there to be no complex discrete spectrum.

Consider the equation

5, a4 a 3. a 9%
@ e+ g+ 0 e+ (@) 5+ G =0 M
ET » \/ET
e=n}/ 5>0, k=Tl >0, g=SF— )/ 2Ls

that describes the vibrations of an elastic beam possessing internal friction (a Voigt material)
/1/ and external friction. Here m is the mass per unit length, £Ev; is the coefficient of
internal friction, £Ev,(z) is the coefficient of external friction, EJ is the bending stiffness,
t is the time, and P (x) 4is a distributed tensile (compression) force.

The boundary conditions corresponding to a rigidly clamped left end of the rod have the

form 2 (0, 7) = du (z, V)/de Jomo = 0 @

After substituting u(z,T) =€y (A, ) into (1) and (2), we obtain a problem on the half-
axis

[g(z1y]) Ak (z2)y Ay
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We will assume in the sequel that the following conditions are satisfied:
1) k(z) is a continuously differentiable function and

k(z)>0, Sk(x)exp(exl*‘)dz<ao, e>0, 6>0
6
2) g(x) 1is a continuously differentiable function and

1 & ()] < gmax < 20, Slg(x)]exp (ex1) dz < oo,
]

S | & (x) | exp (ex1*) dx < oo

L]

Let I be the interval (—oo, —a™), and let 0 a circle of radius r, = &' with centre at
the point A = —a™. Obviously the quantity A?/(1 +aA) is real and non-negative on I and O.

Lemma 1. If conditions 1) and 2) are satisfied, then for A=z 0, A% —a™ there exists
a four-valued function y (A, z) that is a solution of (3) and satisfies the condition
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This function and its derivative with respect to & are analytic in % for fixed r on
a four-sheeted Riemann surface (corresponding to f (A)) with the branch points A=0 and
A= —ah

Proof. Eq.(3) with boundary condition (5) is equivalent to the integral equation

V) = — : sinﬁ(zﬁ—t)dt g shﬁ(é——s) w {®)
X t
{eyay Moyt
14 ak ' 14 ah

Integrating by parts we obtain for w (o) =y { 2} & the integral equation
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We will seek the solution in the form of the series

Wik z)= 0y (h, )+ o)+ 8
wo (hy 2) = 1, Oppa (A, 2) = QA 05 (A, N

We will use the obvious rough estimates

| B9 gin B (z — t)sb Bt —s) | <P, |60 gin Bz —1)|
AP D gin Bz — 1) eb B2 — 5} | < AP

Then it follows from (8) that
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Integrating by parts in the first, third and fourth terms on the right—~hand side of the
last inequality, we obtain
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It hence follows that

1O Pz} | <ERna), 03 —1]<6h 1 (9)

6 2) =exp$ F(h 1) dt

i.e., the assertion of the lemma holds for the function y{,2).

An analogous investigation of the equation obtained by differentiating (6) with respect
to z results in the conclusion of the lemma for y' (3, 2).

For values of A not belonging to the interval I and the circle O, p(A) obviously has
four values, two of which lie in the right~hand half-plane. Therefore, two of the branches
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of the function y (A, #) are square-integrable with respect to # for such A. Let ¥ (A a)
and y, (A, ) be branches of the function y (A, z) satisfying the conditions

lim y; (A, 2)elflr = 4, lim y, (A, 2)eiBlx = 1 (10)

for A within the interval J = (—>, —2a™!) and the upper semicircle of O. The analytic
continuations of these functions into a domain exterior to the circle O with a slit from -—oo
to —2a™! are square-integrable with respect to =z.

We introduce the solution of (3)

P =g (3O (h2) — 5 (A 0) gy (A D)

The zeros of the function #, (A, 0) lying outside the circle O but not in the intexval J
correspond to the eigenvalues of problem (3) and (4). Because of the analyticity of v, (A, 0}
they form here a discrete set that has no condensation points in a finite domain.

Let us define the function

Yo (A 2) = y1" (A 0) ys (A, 2) — g5’ (A, Oy (M, 2)
where ¥; (M #) is the solution of (3) that satisfies the condition

Hm y; (A, 2)e ¥ = 4

for A 1lying on the upper semicircle of 0. The zeros of this function lying within the circle
0 but not on the segment [~2a}, —a}] correspond to eigenvalues. The discrete set of these
eigenvalues can have only A = -—q@' the condensation point of zeros, as follows from the
possibility of analytic continuation of the function 4, (A, 0).

Lemma 2. A continuous spectrum lies on the circle O and the interval I,
This result follows from the existence of a solution for (3) for A 1lying in I and @

A% 0)

( P02 = 1 (o O (0~ u' (b 0y 4, Ol (b ) +
1 (2 0) g3’ (A, 0) — 1y (A, O)ys (A, O)lys (A, 2) -+
12/ (%, Oy (3 0) — 3y (b O’ (b O)1gs (o 2)

that satigfies conditions (4) and has the following asymptotic form as z — ool
P (A, 7) = ae B 4 qeiltil 4 gl 4o o (1)

However, without additional conditions it is obviously impossible to exclude the possi~-
bility of the eixstence of eigenvalues "embedded in the continuous spectrum" as we know (/2/,
say) for other spectral problems. Such eigenvalues are found at points of I and ¢ where

0 =3/ (0 =20 {11

Here y,(A z) is understood to be a branch of the function y (A, 7} decreasing for
given A as r— .

The question of the existence of a spectrum in the right-hand half-plane is of interest
in connection with the question of the stability of theoriginal problem (1) and (2). According
to Lemma 2, it follows that there is no continuous spectrum in the right~hand half-plane.

Theorem 1. If conditions 1) and 2) are satisfied and

{e.@zar<in2, g+(x)={ g((f)' ig?)ig (12)

then there are no eigenvalues of problem (3) and (4) in the right-hand half-plane,

Proof. We will first prove that the eigenvalues in the right-hand half-plane {(if they
exist) are real. We multiply (3), written for the eigenfunction ¥; Ay 2) (A; is a certain
eigenvalue), by (1 4 al)¥; (A;, z) and integrate between z =( and z = >. We obtain

(4 + o Re A),® + Re M1, ® + [(Re 4,)* — (Im A,’U,@ = [|® {13)
aIm A0 ® 4 ImAd,® 4 2 Im A, Re A = 0 (14)

1= S 00 G ), 1= b 0) 0Oy ) Pl

?”—Slw.(x,,z)l'dx 1= [ @) ¥ (b 2) o
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For Rel; >0 it follows from (14) that ImA; =0.

Bccording to the results in /3/, the number of eigenvalues of problem (3) and (4) in the
right-hand half-plane eguals* (*Pivovarchik V.N., On the spectrum of guadratic bundles of
unbounded operators associated with stability problems. Dep. UkrNIINTI January 13, 1988, 217~
UK88, Kiev, 1988.) the number of eigenvalues in the right-hand half-plane for this problem

for
k(x)=0,m=1 and o = 0.

According to Poincare's theorem, the solutions y; (A, m,2) and 1y, (A, 7, z) are entire
functions of N for fixed z and A=zt —a!'(n does not occur the boundary condition (10)).
Analogously, the derivatives vy, (A, m, ), ¥, (M 7, 2), that are solutions of (3) differentiated
with respect to # for [ (z)= 0 and the boundary conditions

limy, (A n, 2)e®*=—|B}, limy, (A, 1, 2)eildlr = B}
xX—+o0 X—»00
are entire functions of 1. Therefore, the solution 1, (A& M, ) is also an entire function

of mn. Moreover, according to Lemma 1 the function 1, (A, m,0) is analytic in A(As=—a™) for
fixed n.

According to the theorem on implicit functions given by the analytic equation (/3/ p.473) the zeros
A; () of the function 1, (A, 1, 0).in the right-hand half-plane are piecewise-analytic in 1. Since the
zeros of this function are simple in the right-hand half-plane (no collisions occur in the right-hand
half-plane), they are analyticin m. For n = (0 there are no eigenvalues in the right-hand half-
plane. The negative part of g (z) obviously does not increase the number of eigenvalues in
the right~hand half-plane (it shifts the eigenvalues in the right-hand half-plane to the left).

We set g(z) = ng, () in (3) for k(z)=0. For the solution belonging together with the
derivative to L, (0, x), this equation is equivalent to the equation

vy )= (15)

yo Oy 2) —n § SREE=0 Conpc )iz, (5)y (b my 9} as

t

where 1y, (A, z) is the solution of (3) from IL,(0, =) for k(z)=0,7n1 =0, and is B one of the
values of § (A).
After differentiation with respect to z and integration by parts on the right-hand side,
(15) is reduced to the form
¥ a)= (16)
¥ (A, x)-—nS cosﬁ(z—t)dtSohﬂ(t—s)ng)y'()», M, 8)ds
X t

The solution of (15) can be represented in the form of the series

ymz)= 2 Zp (MM, @) 2o (M M 2) =4y (A )

n=p

Znsr (A M x):—nscosﬁ(x——t)dtgchﬁ(t——-s)g+(s)z,,(7», n, s)ds
x t

Using the obvious inequalities
Jeos Bz —t) | My (el 1), JchP(z~1) | <Y, (el 1)
that hold for O0<Cz<{t<3 we obtain

2w @ ) <[] § ¢ — ) [ ZRUBID LT 310, m, 1))
whence

ly, (7‘" s ‘T)‘\<\~Ily0’(7\-, Z)lexp SQ)()" s t)dt
1 o 2) = ' (s )| < |0 O )| [exp [ @ m, yat — 1] a7
@ (A, m, t) = Y ing, (2) [eltlt - 1]2 *

Ineqguality (12) is equivalent to the inequality
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{@©,1,5ydt < 1n2
0

Consequently, for positive sufficiently small A the inequality

foa1,5d <2
0

is satisfied, from which the impossibility of the equality y' (A, m, 0) = 0 follows for 7 <= [0, 1]
and sufficient by small A >0 when (17) is taken into account.

Therefore as 1 & [0, 1] increases and for the conditions of the theorem, the eigenvalues
in the right-hand half-plane do not originate from the point A = (0. The inequality

(1 + @ Re Ai® + ReMTi® + (Re hy) L, < Yogunss (1,0 + 1,0]

follows from (13) for ImA; =0.
This last inequality is not satisfied for

Emax 1 Emax
Re A; > max {2—0‘ - ‘/__2_]

Therefore, the spectrum in the right-hand half-plane lies in a finite domain, i.e., as
n increases from O to 1 the eigenvalues are not incident in the right-hand half-plane from
infinity. The theorem is proved.

Let us consider a discrete spectrum in the left-hand half-plane.

Theorem 2.1°, If conditions 1) and 2) are satisfied, g(z)>>0 and inequality (12) hold,
then a discrete spectrum of the problem (3) and (4) is possible on the half-axis (—oc, 0] and
within the circle O.

2°, If condition 1) is satisfied, g() =0, & (2) <kmx < a!, then a discrete spectrum of
problem (3) and (4) is possible on the half-axis (—o0, 0] and between concentric circles of
radii rp=a? and r, = &« Y1 — akpay With centre at the point A = —a™.

3°. If condition 2) is satisfied, g(z) <0, #(z) =0, then a discrete spectrum of problem
(3) and (4) is possible on the half-axis (—,(0] and between circles of radius r, with
centre at the point A = —a™ and radius r; = V9% 4 gma /(20) with centre at the point A = —y
in the left-hand half-plane, where y= (4a + gmax)/(4x?).

Proof. We multiply (3) written for the eigenfunction Vi(A;, ) by ; (A;, z) and we
subtract the complex conjugate equation to (3) multiplied by ; (A, 2) from the result. After
integration with respect to z we obtain that either Imi; =0 or

1;® + {a [(Rehy)? + (Im A;2] + 2Red,}[;® + I,® = 0 (18)

If the result of Theorem 1 is taken into account then all assertions of Theorem 2 follow
from this formula, except the boundedness of the discrete spectrum by the circle of radius rg
in the last case.

To prove the last assertion, we obtain from (14) for Imi;0, k (z) =0

I;0 = —a 1Reh;I;®

It follows from (18) for k(r)=0, g(z) << 0 that

o [(ReA® + (ImA)% + 2Re A} I =

§e@wr 0 0w D de <5 (e @114 0 o) +
] 0
191 0o 2) 12 < (1 — ) 269
whence
(Reh; + )* + (Imhy)? < 3 + goas/ (22)

The theorem is proved.
In the special case when k& (z) =0, g(z) <0, a sufficient condition can be obtained for
there to be no complex discrete spectrum.

Theorem 3. If condition 2) is satisified, m& (2) <0, g(z) = ng; (x), k(z) =0 and the
following inequalities are satisfied

>0, 24T Sexp{n § (A, + Bydr) + expln | (4, + Byar) (19)
0 ]
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4, :3/»‘51{0 £, !gx & | £, 4y =
Yy lg () 182 4 exp V2at) + Y, 1g (2 (1 -+
exp V 2/at)

By=1lg B¢ Tl/«!Hx(i)}t(l+exnl/9/a3)

then a discrete spectrum of problem (3) and (4) is possible for 4 (z)=0 only in the interval
(D00t Ly,
\TTeME hadiV A

Proof. According to the third assertion of Theorem 2, a discrete gpectrum is possible
in the case under consideration only on the half-axis {—o,0l and between circles of radius
ry with centre at the point A= —a™ and radius 7; with centre at the point M= —7 in
the left-hand half-plane. But it follows from (13) for Imd; =0, k(2) =0, —a? < Rek; < 0
that )

Sy 0)Ppda >0
[}

but this is impossible for g (z) < 0.

Therefore, it remains to prove that there are no eigenvalues between the circles mentioned.
The eigenvalues between the circles, including also the real ones, correspond to zeros of the
function Py{ky 10, 0) which is analytic inm A (for fixed 1) outside the circle O with a slit
from A = —2a!' to A= —o, and the entire function mn (for fixed A lying on and outside
the circle 0). This latter follows from the reasoning presented in the proof of Theorem 1.

Because of the continuity of the zeros of the function 4, (A, 1,0) in 7 outside the
circle and their absence for 1 =0, it remains to prove that there are no zeros of the func-
tion Y, (#,1,0) in the circle O and in the interval J when inequality (19} is satisfied. Then
because of the monotonicity of the right-hand side of inequality (19) in 7m the zeros of the
function 1, (A, m, 0) do not occur even for smaller 1, consequently, 1, (A, %, 0) does not vanish
outside the circle O.

For A 1lying on the circle 0 and =z <t< s the inequalities

elflte= ch | § | (£ — 5) <1
| elfite-e) ch | B (f — s) | < Y, [etPle-0 4]
eif i1y 1, jetificet 1

| elfie=9 sin | B [ (@ — t)sh [ B 1 (¢ — 8) | < Vs

| €110 sin | B ] (2 — t) sh | B} (£ — 8) | < Yyeble-D
fM+ahi=1, [flsin|Bliz—O | t—2z) {sin]f|(z—
ni<t

hold.
Using these inequalities, we obtain

f (o, ) — et | < et [exp (1 4y at) — 1] (20)

| ¥p (A M, 2) — &% | < exp 1 § 4, dt) —1

in the same way as when deriving (9).
An analogous investigation of the eguations

¥ (M, )=~ |sge—m|x —_
( €05 ﬁﬁx t) ( M_‘ﬁ_..__ ng, {S‘} y; O» n, s) ds

174 (7» n x)-——z\me—nmx
Scos}ﬁ{(x——t)gﬁé_m_(‘_.__ngl(s)yz (1, 5)ds
x i

P,

obtained DY ulr:erentlatlng \O) with respect to z for lc(a:) fd U after J.ntegrar.x.on ny parts,
results in the inequalities

o’ (b, @) + 1Ble | < |Bleexp (n § Byar) —1] e



653

|9’ (A m, 2) 4 [ Ble B | < | B [exp (nefBzdt) - 1]

Using inequalities (20) and (21), we obtain from the definition of 1, (A, 7, 2)
920 n 0+ 181 (1 = 9| <18 {exp [n (4, + By ar] +
0
exp[n § (4, + By ar] — 2|
]

It is seen from the latter formula that 1, (A, %,0)#% 0 follows from inequality (19).
The first inequality of (21) is satisfied not only in the circle O but also in the interval
J. Consequently y;’ (A, 1, 0)5%0, follows from the inequality (19), i.e., (11) is not satisfied,
meaning, there are no eigenvalues in this interval. The theorem is proved.
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AXISYMMETRIC FLEXURAL OSCILLATIONS OF A THIN DISC

V.A. POPOV

Using methods of the theory of singular perturbations /1-3/, we construct
the asymptotic forms of the eigenfrequencies of flexural low-frequency
oscillations of a thin disc. Application of the method of homogeneous
solutions /4/ or the superposition method /5/ reduces the problem under
consideration to an infinite system of linear algebraic equations. Unlike
these approaches, the theory of singular perturbations enables us to

obtain explicit formulae for corrections to the oscillation eigenfrequencies
obtained from the classical theory of plates.

1. Formulation of the problem. we consider the problem of the axially-symmetric
flexural oscillations of a thin disc of radius a and thickness 2k (e = h/a<<1) in a system of
cylindrical coordinates (r, ¢, z). The planes z = +hk and the side surface r=a are free from
stresses.

In dimensionless coordinates p = r/a, £ = z/h the problem may be written in the form

(1 — 2v)0.%u, + edpdpu, + 0
-2 (4 — )63, (0710, (pu,) + pu, = 0

2 (1 — v)0g%u, + ep™3, (pdyu,) +
(1 — 2v)e?Au, + pu, =

G (Ogu, + otz Jympn = 0 (1.2)
a2 (1 — v)dgu, + 2vp719, (pu,)gmyy = O
212 (1 — v)3ou, + 2v (B, + p 4 lpmy = 0 (1.3)

G (Ogu, + Bps)pmy = 0
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