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ON THE VIBRATIONS OF A SEMI-INFINITE BEAM WITH INTERNAL AND 
EXTERNAL FRICTION* 

V.N. PIVOVARCHIK 

The spectrum of a problem associated with the vibrations of a semi-infinite 
beam with internal (Voigt material) and external viscous friction is 
investigated. Under certain conditions a domain is defined in which a 
complex discrete spectrum is possible. Sufficient conditions are obtained 
for there to be no complex discrete spectrum. 

Consider the equation 

a~+~+~g(z)$P+k(x)~+~=O (1) 

U-V1 I/- +>O, k(+,>O, g(++=-f~t 

that describes the vibrations of an elastic beam possessing internal friction (a Voigtmaterial) 
/l/ and external friction. Here m is the mass per unit length, EVA is the coefficient of 
internal friction, EVZ (2) is the coefficient of external friction, EJ is the bending stiffness, 
t is the time, and P (x) is a distributed tensile (compression) force. 

The boundary conditions corresponding to a rigidly clamped left end of the rod have the 
form U (0, 7) = au (x, z)/kr lx* = 0 (2) 

After substituting u (5, 7) = arTy(h, I) into (1) and (2), we obtain a problem on the half- 
axis 

p + k(“~u’l’ + Lk(z)y 
1+aa 

We will assume in the sequel that the following conditions are satisfied: 
1) k(x) is a continuously differentiable function and 

k(x)>O, 3 k(z) exp (ezl+d)dx< co, s>O, 6>O 
0 

2) g (3 is a continuously differentiable function and 

Let I be the interval (-ze, -a-'), and let 0 a circle of radius r, = a-r with centre at 
the point h = --a-'. Obviously the quantity ha/(l +ah) is real and non-negative on I and 0. 

Lemma 1. If conditions 1) and 2) are satisfied, then for h#O, h# -a-r there exists 
a four-valued function v&z) that is a solution of (3) and satisfies the condition 
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This function and its derivative with respect to x are analytic in h for fixed x on 
a four-sheeted Riemann surface (corresponding to B (V) with the branch points h = 0 and 
?." = -&. 

Proof. Rq.(3) with boundary condition (5) is equivalent to the integral equation 

m 

Y(J.9 2) = - 
’ sinp(x -t)dt I B 

a shB(t-S) x 
c 

IS?(s) bl'L)Y_ _i 

; B 

i 
hk(s) v(L~) 

1-t a?. l-+-CA I 
ds 

Integrating by parts we obtain for o&z)= y(h,s)eBX the integral equation 

0 (L I) = 1 + Q (L 0 (L s)) 

m sinp(z--t)dt 
iu 

B(h,o (h,s)) -= - h 
s 

’ 

s 
5 

w(‘+ah) t 
shB(t--S) eP(x-s)k(s)o(h,s)ds+ 

We will seek the solution in the form of the series 

w (L, 2) = OS (SL, z) + w1 (L 2) i . . ' 
00 (L, 2) = 1, w,+1 (h, .t) = Q (L %I (L r)) 

We will use the obvious rough estimates 

1 L~(~-~) sin p (I - t)sb p (t -s)I < enfPis, 1 eR(x-f) sin p (z - t)I $ 
,Qit, j 2f*-s) dn g tz - t) ch p (8 -*f 1 q&Is 

Then it follows from (8) that 

(6) 

m 

I g’ (4 I I 0, iL 4 I ds -I- , 1 ; aA , --~d$a)P)',g(r)( ]o,(l,s)jds 
t 

Integrating by parts in the first, third and fourth terms on the right-hand side of the 
last inequality, we obtain 

1 O,+lfh. =f I Q f F @, ff lo, fL f) I a 
h 

i 
&8itk (t) t +- 

It hence follows that 

(9) 

i.e., the assertion of the lemma holds for the function s&x). 
AII analogous investigation of the equation obtained by differentiating (6) with respect 

to z results in the conclusion of the lemma for @'(h,z). 
For values of h not belonging to the interval I and the circle 

four values, two of which lie in the right-hand half-plane. 
ThereforeU, B(h) obviously has 

, two of the branches 
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of the function ~(&,a$ are square-integrable with respect to X. for such h. Let 1/l (A, x) 
and ~a(h,z) be branches of the function ~(h,r) satisfying the conditions 

lim y, (A, 3$&lX = 1, lim y, (h, z)e.)ei[61X = 1 (10) X-M X--w 

for I within the intexval J = (--, --2~.-~) and the upper semicircle of 0. The analytic 
continuations of these functions into a domain exterior to the circle 0 with a slit from -CO 
to -2a-l are square-integrable with respect to 5. 

We introduce the solution of (3) 

91 (b 4 = Y,’ (b O&2 f% z) - Y,’ (A, 0) Yl in, 4 

The zeros of the function ql(h,O) lying outside the circle 0 but not in the interval J 
correspond to the eigenvalues of problem (3) and (4). Because of the analyticity of $l1(~,O) 
they form here a discrete set that has no condensation points in a finite domain. 

Let us define the function 

92 (h7 s) = Y,' (% 0) Ys (h, s) - Y,' (A, O)Y, (a, z) 

where y,(h,r) is the solution of (3) that satisfies the condition 

fox h. lying on the upper semicircle.of 0. The zeros of this function lying within the circle 
0 but not on the segment [-2a? -a-1l correspond to eigenvalues. The discrete set of these 
eigenvalues can have only &=--a-l the condensation point of zeros* as follows from the 
possibility of analytic continuation of the function 9,(&O) 

Lemma 2. A continuous spectrum lies on the circle 0 and the interval I. 
This result follows from the existence of a solution for (3) for 5 lying in I and 0 

(a+ 0) 
* (a, 2) = &' (a, 0)~~ (a, 0) - Y; (a, 0) Y, (a, O)IY~ (a, 3 + 

kh (A9 o) 6~3' (a, o) - Y,' (a, O)Y, (a, o)f~, (a, 5) 4- 
KP90k2 (a, 0) - Y, (a, 0)~~' (a, O)JY, (a, r) 

that satisfies conditions (4) and has the following asymptotic form as I-+w: 

+ (a, z) = ale-IFix + a,eW4 +- a,&IPlr .+ 0 (1) 

However, without additional conditions it is obviously impossible to exclude the possi- 
bility of the eixstence of eigenvalues "embedded in the continuous spectrum" as we know C/2/, 
say) for other spectral problems. Such eigenvalues are found at points of I and 0 where 

gr (a, 0) = pi' (a,~) = 0 (ii) 

givenSYeasY'.E?~. 
is understood to be a branch of the function y&s) decreasing for 

The question of the existence of a spectrum in the right-hand half-plane is of interest 
in connection with the question of the stability oftheoriginalproblem (1) and (2). According 
to Lemma 2, it follows that there is no continuous spectruminthe right-hand half-plane. 

Theorem 1. If conditions 1) and 2) are satisfied and 

then there are no eigenvalues of problem (3) and (4) in the right-hand half-plane. 

Proof. We will first prove that the eigenvalues in the right-hand half-plane (if they 
exist) are real. We multiply (31, written for the eigenfunction $,(?v,, z) (5 is a certain 
eigenvalue), by (1 f a@#, (h,,t) and integrate between z = 0 and x = 90. We obtain 
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For Rehj> 0 it follows from (14) that lrn& = 0. 
According to the results in /3/, the number of eigenvalues of problem (3) and (4) in the 

right-hand half-plane equals* (*Pivovarchik V.N., On the spectrum of quadratic bundles of 
unbounded operators associated with stability problems. Dep. UkrNIINTI January 13, 1988, 217- 
UK88, Kiev, 1988.) the number of eigenvalues in the right-hand half-plane for this problem 
for 

k(x) ~0, q = 1 and a = 0. 

According to Poincare's theorem, the solutions Y,(L % X) and Y, (A* I)* X) are entire 
functions of n for fixed x and h# -CZ-'(9 does not occur the boundary condition (10)). 
Analogously, the derivatives y,‘(h,q,z), yz’(h,q,z), that are solutions of (3) differentiated 
with respect to x for k(X)= 0 and the boundary conditions 

limy,‘(h,q, ci-)elfilX=-Ifii, LLtyy2’(h, 9, x)eWx=-iIp~ 
x-cc 

are entire functions of Il. Therefore, the solution ql(h,q,X) is also an entire function 
of I). Moreover, according to Lemma 1 the function ql(h,n,O) is analytic in h&+---a-') for 
fixed q. 

Accordingtothetheoremonimplicitfunctionsgivenbytheanalyticequation (/3/p.473) the zeros 
hi(q) of the function I& (A, q, 0) linthe right-handhalf-plane are piecewise-analytic in q. Since the 
zerosof this functionare srmpleinthe right-handhalf-plane (nocollisions occurinthe right-hand 
half-plane), theyareanalyticin 9. For q =O there are no eigenvalues in the right-hand half- 
plane. The negative part of g(x) obviously does not increase the number of eigenvalues in 
the right-hand half-plane (it shifts the eigenvalues in the right-hand half-plane to the left). 

We set g(X) = qg+ (X) in (3) for k(x)e)EO. For the solution belonging together with the 
derivative to L,(O, m), this equation is equivalent to the equation 

Y& tl,5)- (15) 
cc Dii 

y, (h 2) - q 
s 

sin @ ‘“s- t, dt 1 sh B (t - s) lg, (s) y’ (h, q, S)]’ as 
s t 

where y,(h,X) is the solution of (3) from L, (0, x) for k(X)= 0, q = 0, and is fi one of the 
values of P(?L). 

After differentiation with respect to X and integration by parts on the right-hand side, 
(15) is reduced to the form 

Y'(h, ,Tl, 5)= 
m 

Y,'(h,X)--rlcosB(X--)dtCchB(t--)g+(s)y'(h,11,s)ds 
; i 

The solution of (15) can be represented in the form of the series 

Using the obvious inequalities 

I cos B (2 - t) 1 -< VP (elfI* + i), ) ch /3 (x - t) ) ,< l/z (elfi!’ + 1) 

that hold for O.<z.< t<s, we obtain 

1 y’ (h, 11. z) - y,’ (A7 1) 1 Q 1 y,’ (h, r) \ [exp \ CI, (h, q, t) dt - 11 
; 

CD (h, q, t) = V,tqg+ (t) Wt + IP 

(17) 

Inequality (12) is equivalent to the inequality 
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7 @(O, 1, t)dt<In2 
II 

Consequently, for positive sufficiently small h the inequality 

1 D(h, 1, t)dt< In 2 
II 

is satisfied, from which the impossibility of the equality #(h,n,O) = 0 follows for n C= IO,11 
and sufficient by small J.>O when (17) is taken into account. 

Therefore as nE IO,11 increases and for the conditions of the theorem, the eigenvalues 
in the right-hand half-plane do not originate from the point h ~0. The inequality 

(1 + a Re hj)ZP) -k RehjZP + (Re h#Z,(3) < Yzgm,, [Z&r) + Z,(a)] 

follows from (13) for Im a, = 0. 
This last inequality is not satisfied for 

Therefore, the spectrum in the right-hand half-plane lies in a finite domain, i.e., as 
n increases from 0 to 1 the eigenvalues are not incident in the right-hand half-plane from 
infinity. The theorem is proved. 

Let us consider a discrete spectrum in the left-hand half-plane. 

Theorem 2.1°. If conditions 1) and 2) are satisfied, g(z)>0 and inequality (12) hold, 
then a discrete spectrum of the problem (3) and (4) is possible on the half-axis (-m, 01 and 
within the circle 0. 

2O. If condition 1) is satisfied, g(x)= 0, k(x)<k,,, <a-l, then a discrete spectrum of 
problem (3) and (4) is possible on .the half-axis (---,_O] and between concentric circles of 
radii rl = a-r and r, = a-')/1 - akmax with centre at the point h = -a-'. 

30. If condition 2) is satisfied, g(z)< 0, k(z)= 0, then a discrete spectrum of problem 
(3) and (4) is possible on the half-axis (-w,O] and between circles of radius rl with 
centre at the point a = --CC-~ and radius rs = f/y" + g,,,,l(2a) with centre at the point i =--y 
in the left-hand half-plane, where y= (4~ + gmax)/(4az). 

Proof. We multiply (3) written for the eigenfunction *i (4, 4 ___ by $i (at, x) and we 
subtract the complex conjugate equation to (3) multiplied by $i(h,,x) from the result. After 
integrationwithrespect to x we obtain that either Imh,=O. or 

Zi@) + {a ](Rea# + (Im l#l + 2Reh,)ziW + Ii(&) = 0 (18) 

If the result of Theorem 1 is taken into account then all assertions of Theorem 2 follow 
from this formula, except the boundedness of the discrete spectrum by the circle of radius r3 
in the last case. 

To prove the last assertion, we obtain from (14) for In&# 0, k (a$~ 0 

Zp = -&RehjZi(s) 

It follows from (18) for k(z)z)mO, g(x)<0 that 

{a [(Re a,)* + (Im hi)*] + 2 Re 5) I?)= 
m 

whence 
(RelL, + rY + (In&)* < ya + g,,,,,/ (2a) 

The theorem is proved. 
In the special case when k(z)= 0, g(x)<O, a sufficient condition can be obtained for 

there to be no complex discrete spectrum. 

Theorem 3. If condition 2) is satisified, ngl (x) Q 0, g(x) = ng, (5). k (5) z 0 and the 
following inequalities are satisfied 
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then a discrete spectrum of problem (3) and (4) is possible for k (x) s 0 only in the interval 
(-2c4-1, --a-l). 

Proof. According to the third assertion of Theorem 2 , a discrete spectrum is possible 
in the case under consideration only on the half-axis (- =,OI and between circles of radius 
r, with centre at the point h = -a-' and radius r3 with centre at the point h=--yin 
the left-hand half-plane. But it follows from (13) for Imhj - 0, k (z) ES 0, --CL-~ < Reh, < 0 
that 

but this is imp0ssibl.e for g(s)< 0. 
Therefore, it remains to prove that there are no eigenvalues between the circles mentioned. 

The eigenvalues between thecircles,including also the real ones, correspond to zeros of the 
function *,{a q,O) which is analytic in h (for fixed n) outside the circle 0 with a slit 
from h = -26' to X=-m, and the entire function n (for fixed h lying on and outside 
the circle 0). This latter follows from the reasoning.presented in the proof of Theorem 1. 

Because of the continuity of the zeros of the function $,(L,n,O) in n outside the 
circle and their absence for q=O, it remains to prove that there are no zeros of the func- 
tion $l(h,q, 0) in the circle 0 and in the interval J when inequality (19) is satisfied. Then 
because of the monotonicity of the right-hand side of inequaLity (19) in 11 the zeros of the 
function $l(h,q,O) do not occur even for smaller q, consequently, $I(h,q,O) does not vanish 
outside the circle 0. 

For h lying on the circle 0 and I <.t<s the inequalities 

hold. 
Using these inequalities, we obtain 

in the same way as when deriving (9). 
An analogous investigation of the equations 

y,'(k rl, I)=- Ifi\e-'@Ix-- 

obtained by differentiating (6) with respect to x for k(r) ~0 after integration by parts, 
results in the inequalities 
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Using inequalities (20) and (21), we obtain from the definition of &(&n,z) 

I%& rlt 0J-k IPIt -i)lGlPI{expjq~(A,+B3dt]+ 

exp[q j(-% + Wdtl-2} 
II 

It is seen from the latter formula that $r(h, q, 0)#0 follows from inequality (19). 
The first inequality of (21) is satisfied not only in the circle 0 but also in the interval 
J. Consequently y,'(h,q, O)#O, follows from the inequality (19), i.e., (11) is not satisfied, 
meaning, there are no eigenvalues in this interval. The theorem is proved. 
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AXISYMMETRIC FLEXURAL OSCILLATIONS OF A THIN DISC* 

V.A. POPOV 

Using methods of the theory of singular perturbations /l-3/, we construct 
the asymptotic forms of the eigenfrequencies of flexural low-frequency 
oscillations of a thin disc. Application of the method of homogeneous 
solutions /4/ or the superposition method /5/ reduces the problem under 
consideration to an infinite system of linear algebraic equations. Unlike 
these approaches, the theory of singular perturbations enables us to 
obtain explicit formulae for corrections to the oscillation eigenfrequencies 
obtained from the classical theory of plates. 

1. Formulation of the problem. We consider the problem of the axially-symmetric 
flexural oscillations of a thin disc of radius a and thickness 2h(e =h/a<1) in a system of 
cylindrical coordinates (~,(P,z). The planes z = +h and the side surface r=a are free from 
stresses. 

In dimensionless coordinates p = rfa, 5 =zlh the problem may be written in the form 

(1 - 2v)a&& + @Y&u, -I- (1.1) 

- 2 (1 - v)e"L$ (p-X$ (pu,)) + par = 0 
2 (1 - v)%% + sP-% (Pa&) + 

(1 - 2v)e*Au, + Mu, = 0 

G (4Mp + %u&=fl = 0 (1.2) 

d I2 (1 - qapz + 2vp-'47 (pu,)l+*:1 = 0 

d I2 (1 - Wp$ + 2v (a,% + p-'uT.)I,, = 0 (1.3) 

G (+, + a,~,),=, = 0 
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